UUCMS. No.	
------------	--

B.M.S. COLLEGE FOR WOMEN, AUTONOMOUS BENGALURU-560004 SEMESTER END EXAMINATION-SEPT/OCT-2023

M.Sc. in Chemistry-2nd Semester

INORGANIC CHEMISTRY-II

Course code: MCH201T Duration: 3 Hours

Instruction: Answer Question No. 1 and any FIVE of the remaining.

1. Answer any TEN questions

- a) How do the pi bonding in ligands help in the stabilization of metal complex?
- b) Define the term Cotton effect?
- c) Mention the different types of mode of bonding in metal dinitrogens.
- d) Why tetrahedral complexes are mostly high spin complexes? Give reason.
- e) Which of the following metal complex do not shows J-T distortion? Justify your answer
 i) [CrF₆]²⁻ ii) [Cu(H₂O)₆]²⁺
- f) What is the nephelauxetic ratio? Arrange following ligands in the order of increasing nephelauxetic effect. NH₃, I⁻, F⁻, Cl⁻
- g) Derive the possible term symbols for Mn^{2+} and Fe^{2+}
- h) Lanthanide exhibit sharp absorption bands. Justify
- i) Mention the reason for origin of the intense yellow color in K₂Cr₂O₇
- j) Calculate the spin only magnetic moment of $[Ni(H_2O_6)]^{2+}$
- k) Point out the significance of diamagnetic correction.
- 1) Write photosubstitution reaction of metal complex.
- 2. a) Explain how nature of ligand influences the stability of metal complex.
 - b) Write a note on Magnetic circular dichroism (MCD). How it is unique from CD technique.

(5+5=10)

3. a) Discuss the splitting of d-orbitals in octahedral and tetrahedral geometries.

b) Sketch the MO energy level diagram for $[Mn(H_2O)_6]^{2+}$ involving sigma bonding

(5+5=10)

(2X10 = 20)

OP Code: 12007

Max.Marks:70

- **4**. a) $[Co(DMSO)_4]^{2+}$ shows three spin allowed transitions at 7400 cm⁻¹, 14600 cm⁻¹ and 18700 cm⁻¹. Calculate the values of B¹, β and % of covalencey. (Given B for Co²⁺ ion 1120 cm⁻¹).
 - b) In what way Tanaube-Sugano diagrams are more useful than orgel diagram? Set up orgel diagram for a complex where the metal has d³ electron configuration and explain the salient features. (5+5=10)
- **5** a) Define the term magnetic susceptibility. Explain how VSM method is useful for the determination of magnetic susceptibility of metal complex.
 - b) Sketch the Jablonskii diagram. Discuss various photophysical processes. (5+5=10)
- 6. a) With the help of hysteresis loop explain the term reactivity and coercivity.
 - b) Distinguish between spin allowed and spin forbidden transition.
 - c) Discuss any two evidences foe metal ligand covalent bonding. (4+3+3=10)
- **7**. a) Describe the utility of CD and ORD in determination of absolute configuration of metal complexes
 - b) Comment on the spectral properties of lanthanide and actinide metal complexes
 - c) Point out the factors that influences the magnitude of 10Dq in octahedral metal complexes.
 Describe any two factors in detail. (4+3+3=10)
- 8. a) Explain spin crossover with an example
 - b) Write an account on stereochemical non-rigidity
 - c) What are the various types of magnetic behaviour found in coordinate compounds?

(4+3+3=10)
