UUCMS. No.

\square

B.M.S. COLLEGE FOR WOMEN, AUTONOMOUS
 BENGALURU-560004
 SEMESTER END EXAMINATION-SEPT/OCT-2023

M.Sc. in Chemistry-2 ${ }^{\text {nd }}$ Semester

INORGANIC CHEMISTRY-II

Course code: MCH201T

QP Code: 12007
Duration: 3 Hours

Instruction: Answer Question No. 1 and any FIVE of the remaining.

1. Answer any TEN questions

$(2 X 10=20)$
a) How do the pi bonding in ligands help in the stabilization of metal complex?
b) Define the term Cotton effect?
c) Mention the different types of mode of bonding in metal dinitrogens.
d) Why tetrahedral complexes are mostly high spin complexes? Give reason.
e) Which of the following metal complex do not shows J-T distortion? Justify your answer
i) $\left[\mathrm{CrF}_{6}\right]^{2-}$
ii) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
f) What is the nephelauxetic ratio? Arrange following ligands in the order of increasing nephelauxetic effect. $\quad \mathrm{NH}_{3}, \mathrm{I}^{-}, \mathrm{F}^{-}, \mathrm{Cl}^{-}$
g) Derive the possible term symbols for Mn^{2+} and Fe^{2+}
h) Lanthanide exhibit sharp absorption bands. Justify
i) Mention the reason for origin of the intense yellow color in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
j) Calculate the spin only magnetic moment of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{2+}$
k) Point out the significance of diamagnetic correction.

1) Write photosubstitution reaction of metal complex.
2. a) Explain how nature of ligand influences the stability of metal complex.
b) Write a note on Magnetic circular dichroism (MCD). How it is unique from CD technique.
$(5+5=10)$
3. a) Discuss the splitting of d-orbitals in octahedral and tetrahedral geometries.
b) Sketch the MO energy level diagram for $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ involving sigma bonding
4. a) $\left[\mathrm{Co}(\mathrm{DMSO})_{4}\right]^{2+}$ shows three spin allowed transitions at $7400 \mathrm{~cm}^{-1}, 14600 \mathrm{~cm}^{-1}$ and $18700 \mathrm{~cm}^{-1}$. Calculate the values of B^{1}, β and $\%$ of covalencey.
(Given B for Co^{2+} ion $1120 \mathrm{~cm}^{-1}$).
b) In what way Tanaube-Sugano diagrams are more useful than orgel diagram? Set up orgel diagram for a complex where the metal has d^{3} electron configuration and explain the salient features.

5 a) Define the term magnetic susceptibility. Explain how VSM method is useful for the determination of magnetic susceptibility of metal complex.
b) Sketch the Jablonskii diagram. Discuss various photophysical processes.
6. a) With the help of hysteresis loop explain the term reactivity and coercivity.
b) Distinguish between spin allowed and spin forbidden transition.
c) Discuss any two evidences foe metal ligand covalent bonding.
$(4+3+3=10)$
7. a) Describe the utility of CD and ORD in determination of absolute configuration of metal complexes
b) Comment on the spectral properties of lanthanide and actinide metal complexes
c) Point out the factors that influences the magnitude of 10 Dq in octahedral metal complexes. Describe any two factors in detail.
$(4+3+3=10)$
8. a) Explain spin crossover with an example
b) Write an account on stereochemical non-rigidity
c) What are the various types of magnetic behaviour found in coordinate compounds?

